Eigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems

نویسنده

  • Daniel Bienstock
چکیده

Consider a minimization problem given by a nonlinear, convex objective function over a nonconvex feasible region. Traditional optimization approaches will frequently encounter a fundamental difficulty when dealing with such problems: even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away” from any feasible point. As a result (and in particular, because of the nonconvex objective) the lower bound provided by a convex relaxation will typically be extremely poor. Furthermore, we will tend to see very large branch-and-bound (or -cut) trees with little or no improvement over the lower bound. In this work we present theory and implementation for an approach that relies on three ingredients: (a) the S-lemma, a major tool in convex analysis (b) efficient projection of quadratics to lower dimensional hyperplanes, and (c) efficient computation of combinatorial bounds for the minimum distance from a given point to the feasible set, in the case of several signficant optimization problems. Altogether, our approach strongly improves lower bounds at a small computational cost, even in very large examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Non-convex Geometry of Low-rank Matrix Optimization

This work considers the minimization of a general convex function f(X) over the cone of positive semidefinite matrices whose optimal solution X⋆ is of low-rank. Standard first-order convex solvers require performing an eigenvalue decomposition in each iteration, severely limiting their scalability. A natural nonconvex reformulation of the problem factors the variable X into the product of a rec...

متن کامل

Exploiting Structure for Tractable Nonconvex Optimization

MAP inference in continuous probabilistic models has largely been restricted to convex density functions in order to guarantee tractability of the underlying model, since high-dimensional nonconvex optimization problems contain a combinatorial number of local minima, making them extremely challenging for convex optimization techniques. This choice has resulted in significant computational advan...

متن کامل

Convex Underestimation of C2 Continuous Functions by Piecewise Quadratic Perturbation

Clifford A. Meyer and Christodoulos A. Floudas Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA Abstract This paper presents an efficient branch and bound approach to address the global optimization of constrained optimization problems with twice differentiable functions. A lower bound on the global minimum is determined via a convex nonlinear programming probl...

متن کامل

The mathematics of eigenvalue optimization

Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ide...

متن کامل

MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions

Many optimization problems arising in high-dimensional statistics decompose naturally into a sum of several terms, where the individual terms are relatively simple but the composite objective function can only be optimized with iterative algorithms. In this paper, we are interested in optimization problems of the form F(Kx) + G(x), where K is a fixed linear transformation, while F and G are fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010